Chapter 7: Trig Equations and Identities Test

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. What is the exact value of the expression $\sin 280^{\circ} \cos 130^{\circ}-\cos 280^{\circ} \sin 130^{\circ}$?
A. $-\frac{1}{\sqrt{3}}$
B. $\frac{1}{\sqrt{3}}$
C. $-\frac{1}{2}$
D. $\frac{1}{2}$
2. What are the exact roots of the equation $\tan x=\sqrt{3}$ for $0 \leq x \leq 2 \pi$?
A. $x=\frac{-2 \pi}{3}$ or $x=\frac{5 \pi}{6}$
B. $x=\frac{-2 \pi}{3}$ or $x=\frac{\pi}{3}$
C. $x=\frac{\pi}{3}$ or $x=\frac{4 \pi}{3}$
D. $x=\frac{5 \pi}{6}$ or $x=\frac{7 \pi}{6}$
3. Assume x is an angle in standard position with $\cos x=-\frac{1}{2}$.

In which quadrant could the terminal arm of angle x lie?
A. Quadrant 3 or 4
C. Quadrant 2 or 3
B. Quadrant 1 or 4
D. Quadrant 2 or 4
4. What are the solutions of the equation $\tan x=-\frac{1}{2}$ for $0 \leq x \leq 2 \pi$, to the nearest hundredth?
A. $x \doteq-0.55$
B. $x \doteq 1.11$ or $x \doteq 2.68$
C. $x \doteq 2.68$ or $x \doteq 5.82$
D. $x \doteq 153.43$
5. What is the exact value of the expression $\frac{2 \tan \left(\frac{\pi}{8}\right)}{1-\tan ^{2}\left(\frac{\pi}{8}\right)}$?
A. $\frac{1}{\sqrt{2}}$
B. -1
C. $-\frac{1}{\sqrt{2}}$
D. 1
6. Write the expression $\tan ^{2} \theta-\sec ^{2} \theta-3$ as a single term.
A. -4
B. -1
C. -3
D. -2
7. What are the non-permissible values of θ for the expression $\sin \theta\left(-\cot ^{2} \theta-1\right)$?
A. $\theta \neq \frac{\pi}{2}+\pi k, k \in \mathbf{Z}$
C. All real values are permissible.
B. $\theta \neq \pi k, k \in \mathbf{Z}$
D. $\theta \neq \frac{\pi k}{2}, k \in \mathbf{Z}$
8. Which of these values of x is NOT a solution of the equation $\cos x=\frac{1}{2}$?
A. $x=\frac{\pi}{3}$
B. $x=\frac{5 \pi}{3}$
C. $x=\frac{-\pi}{3}$
D. $x=\frac{7 \pi}{6}$
9. Write the expression $\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta$ as a single term.
A. $\cos \theta$
B. $\sin \theta$
C. $\sin 3 \theta$
D. $\cos 3 \theta$
10. The first two positive roots of the equation $\sin 3 x=-\frac{2}{3}$ are approximately 1.29 and 1.85 . Which expression represents the general solution, where $k \in \mathbf{Z}$?
A. $x \doteq 1.29+\frac{1}{3} k$ or $x \doteq 1.85+\frac{1}{3} k$
B. $x \doteq 1.29+\frac{\pi}{3} k$ or $x \doteq 1.85+\frac{\pi}{3} k$
C. $x \doteq 1.29+\frac{2}{3} k$ or $x \doteq 1.85+\frac{2}{3} k$
D. $x \doteq 1.29+\frac{2 \pi}{3} k$ or $x \doteq 1.85+\frac{2 \pi}{3} k$
11. Write the expression $\frac{\sin ^{2} \theta}{\tan ^{2} \theta}$ as a single term.
A. $\tan ^{2} \theta$
B. $\sin ^{2} \theta$
C. $\cos ^{2} \theta$
D. $\sec ^{2} \theta$
12. Use a graph to determine which of these values of x is an approximate solution of the equation $5 \tan x=3$.
A. $x \doteq 3.68$
B. $x \doteq 1.33$
C. $x \doteq 0.68$
D. $x \doteq 30.96$

Short Answer

1. Write the expression $\frac{-\sin \theta+\csc \theta}{\cot \theta}$ as a single term.
2. Solve the equation $\cos x-5=6 x$ over the set of real numbers. Give the answer to the nearest hundredth.
3. The first two positive roots of the equation $\sin 3 x=\frac{1}{8}$ are $x \doteq 0.04$ and $x \doteq 1.01$.

Determine the general solution of this equation.
4. Determine the exact value of $\sin \frac{\pi}{12}$.
5. Given angle θ in standard position with its terminal arm in Quadrant 3 and $\cos \theta=-\frac{3}{5}$, determine the exact value of $\tan 2 \theta$.

Problem

1. Use algebra to solve the equation $-\sin x=2 \cos 2 x$ over the domain $0 \leq x \leq 2 \pi$. Give the answers to the nearest hundredth.
2. For the identity $\frac{\sin \theta \cot \theta}{\cos \theta}=1$:
a) Verify the identity for $\theta=\frac{\pi}{6}$.
b) Prove the identity.
3. Prove the identity $\frac{\csc \theta-\cot \theta}{1-\cos \theta}=\csc \theta$.
4. Prove the identity $\frac{\cot ^{2} \theta-\cos ^{2} \theta}{\cos \theta \cot ^{2} \theta+\cos ^{2} \theta \cot \theta}=\sec \theta-\tan \theta$.
5. Prove the identity $\sin \left(\frac{\pi}{6}+\theta\right)+\sin \left(\frac{\pi}{6}-\theta\right)=\cos \theta$.

Chapter 7: Trig Equations and Identities Test

 Answer Section
MULTIPLE CHOICE

1. ANS: D

PTS: 1

DIF: Moderate

REF: 7.5 Sum and Difference

Identities

LOC: 12.T5 TOP: Trigonometry

KEY: Conceptual Understanding | Procedural Knowledge
2. ANS: C
PTS: 1
DIF: Easy
REF: 7.2 Solving Trigonometric Equations Algebraically LOC: 12.T5
TOP: Trigonometry KEY: Conceptual Understanding | Procedural
Knowledge
3. ANS: C
PTS: 1
DIF: Easy
REF: 7.1 Solving Trigonometric Equations Graphically LOC: 12.T3
TOP: Trigonometry KEY: Conceptual Understanding
4. ANS: C PTS: 1 DIF: Moderate
REF: 7.1 Solving Trigonometric Equations Graphically
LOC: 12.T5
TOP: Trigonometry KEY:
Conceptual Understanding | Procedural
Knowledge
$\begin{array}{ll}\text { 5. ANS: D } & \text { PTS: } 1 \quad \text { DIF: Easy } \\ \text { LOC: } 12 . \text { T5 } & \text { TOP: Trigonometry }\end{array}$
REF: 7.6 Double-Angle Identities
KEY: Conceptual Understanding | Procedural Knowledge
6. ANS: A
PTS: 1
DIF: Easy
LOC: $12 . \mathrm{T} 6$
TOP: Trigonometry
7. ANS: B PTS: 1 DIF: Easy
LOC: 12.T6
TOP: Trigonometry
8. ANS: D PTS: 1 DIF: Easy
REF: 7.2 Solving Trigonometric Equations Algebraically
TOP: Trigonometry KEY:
9. ANS: C PTS: 1 DIF: Easy
Identities
LOC: 12.T6
TOP: Trigonometry
10. ANS: D
PTS: 1
DIF: Easy
REF: 7.1 Solving Trigonometric Equations Graphically
TOP: Trigonometry KEY:

LOC: 12.T5
Conceptual Understanding | Procedural

Knowledge
11. ANS: C PTS: 1 DIF: Easy

REF: 7.3 Reciprocal and Quotient Identities
LOC: 12.T6
TOP: Trigonometry
KEY: Procedural Knowledge
12. ANS: A

PTS: 1
DIF: Moderate
REF: 7.1 Solving Trigonometric Equations Graphically
TOP: Trigonometry
KEY:
LOC: 12.T5
Procedural Knowledge

SHORT ANSWER

1. ANS:
$\cos \theta$
PTS: 1 DIF: Moderate REF: 7.4 The Pythagorean Identities
LOC: 12.T6 TOP: Trigonometry
KEY: Conceptual Understanding | Procedural Knowledge
2. ANS:
$x \doteq-0.71$
PTS: 1 DIF: Moderate REF: 7.1 Solving Trigonometric Equations Graphically
LOC: 12.T5 TOP: Trigonometry
KEY: Conceptual Understanding | Procedural Knowledge
3. ANS:
$x \doteq 0.04+\frac{2 \pi}{3} k, k \in \mathbf{Z}$ or $x \doteq 1.01+\frac{2 \pi}{3} k, k \in \mathbf{Z}$
PTS: 1 DIF: Easy REF: 7.1 Solving Trigonometric Equations Graphically
LOC: 12.T5 TOP: Trigonometry
KEY: Conceptual Understanding | Procedural Knowledge
4. ANS:
$\frac{\sqrt{3}-1}{2 \sqrt{2}}$
PTS: 1 DIF: Moderate REF: 7.5 Sum and Difference Identities
LOC: 12.T5 TOP: Trigonometry
KEY: Conceptual Understanding | Procedural Knowledge
5. ANS:
$\tan 2 \theta=-\frac{24}{7}$

PTS: 1 DIF: Moderate REF: 7.6 Double-Angle Identities
LOC: 12.T5 TOP: Trigonometry
KEY: Procedural Knowledge | Conceptual Understanding

PROBLEM

1. ANS:
$-\sin x=2 \cos 2 x$
$-\sin x=2\left(1-2 \sin ^{2} x\right)$
$4 \sin ^{2} x-\sin x-2=0$
Use the quadratic formula: $\sin x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Substitute: $a=4, b=-1, c=-2$
$\sin x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(4)(-2)}}{2(4)}$
$\sin x=\frac{1 \pm \sqrt{33}}{8}$
Either $\sin x=\frac{1+\sqrt{33}}{8}$ or $\sin x=\frac{1-\sqrt{33}}{8}$
$\frac{1+\sqrt{33}}{8}$ is positive.
$\frac{1-\sqrt{33}}{8}$ is negative.
$\sin x$ is positive when the terminal arm of
angle x in the domain $0 \leq x \leq 2 \pi$ lies in
Quadrant 1 or Quadrant 2.
The reference angle is:
$\sin x$ is negative when the terminal arm of angle x in the domain $0 \leq x \leq 2 \pi$ lies in Quadrant 3 or Quadrant 4.
The reference angle is:
$\sin ^{-1}\left(\frac{1+\sqrt{33}}{8}\right)=1.0029$.
$\sin ^{-1}\left(\frac{-1+\sqrt{33}}{8}\right)=0.6348 \ldots$
In Quadrant 1, $x=1.0029$..
In Quadrant 3, $x=\pi+0.6348$.

$$
\doteq 1.00
$$

$$
\doteq 3.78
$$

In Quadrant 2, $x=\pi-1.0029$. In Quadrant 4, $x=2 \pi-0.6348$..
$\doteq 2.14$
$\doteq 5.65$
The roots are: $x \doteq 1.00, x \doteq 2.14, x \doteq 3.78$, and $x \doteq 5.65$
PTS: 1 DIF: Moderate REF: 7.6 Double-Angle Identities
LOC: 12.T5 TOP: Trigonometry
KEY: Conceptual Understanding | Procedural Knowledge | Communication
2. ANS:
a) $\frac{\sin \theta \cot \theta}{\cos \theta}=1$
Substitute: $\theta=\frac{\pi}{6}$

$$
\begin{aligned}
\text { L.S. } & =\frac{\sin \frac{\pi}{6} \cot \frac{\pi}{6}}{\cos \frac{\pi}{6}} \\
& =\frac{\frac{1}{2} \cdot \sqrt{3}}{\frac{\sqrt{3}}{2}} \\
& =1 \\
& =\text { R.S. }
\end{aligned}
$$

The left side is equal to the right side, so $\theta=\frac{\pi}{6}$ is verified.
b) L.S. $=\frac{\sin \theta \cot \theta}{\cos \theta}$

$$
\begin{aligned}
& =\frac{\sin \theta \cdot \frac{\cos \theta}{\sin \theta}}{\cos \theta} \\
& =\sin \theta \cdot \frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\cos \theta} \\
& =1 \\
& =\text { R.S. }
\end{aligned}
$$

The left side is equal to the right side, so the identity is proved.

PTS: 1 DIF: Moderate REF: 7.3 Reciprocal and Quotient Identities
LOC: 12.T6 TOP: Trigonometry
KEY: Procedural Knowledge | Conceptual Understanding | Communication

3. ANS:

$$
\begin{aligned}
\text { R.S. } & =\csc \theta \\
& =\csc \theta\left(\frac{1-\cos \theta}{1-\cos \theta}\right) \\
& =\frac{\csc \theta-\csc \theta \cos \theta}{1-\cos \theta} \\
& =\frac{\csc \theta-\frac{1}{\sin \theta} \cdot \cos \theta}{1-\cos \theta} \\
& =\frac{\csc \theta-\frac{\cos \theta}{\sin \theta}}{1-\cos \theta} \\
& =\frac{\csc \theta-\cot \theta}{1-\cos \theta} \\
& =\text { L.S. }
\end{aligned}
$$

The left side is equal to the right side, so the identity is proved.
PTS: 1 DIF: Moderate REF: 7.3 Reciprocal and Quotient Identities
LOC: 12.T6 TOP: Trigonometry
KEY: Procedural Knowledge | Conceptual Understanding | Communication | Problem-Solving Skills
4. ANS:
L.S. $=\frac{\cot ^{2} \theta-\cos ^{2} \theta}{\cos \theta \cot ^{2} \theta+\cos ^{2} \theta \cot \theta}$
$=\frac{(\cot \theta+\cos \theta)(\cot \theta-\cos \theta)}{\cos \theta \cot \theta(\cot \theta+\cos \theta)}$
$=\frac{\cot \theta-\cos \theta}{\cos \theta \cot \theta}$
$=\frac{\cot \theta}{\cos \theta \cot \theta}-\frac{\cos \theta}{\cos \theta \cot \theta}$
$=\frac{1}{\cos \theta}-\frac{1}{\cot \theta}$
$=\sec \theta-\tan \theta$
$=$ R.S.
The left side is equal to the right side, so the identity is proved.
PTS: 1
DIF: Difficult REF: 7.3 Reciprocal and Quotient Identities
TOP: Trigonometry
LOC: $12 . \mathrm{T} 6$
KEY: Procedural Knowledge | Conceptual Understanding | Communication | Problem-Solving Skills
5. ANS:
L.S. $=\sin \left(\frac{\pi}{6}+\theta\right)+\sin \left(\frac{\pi}{6}-\theta\right)$
$=\left(\sin \frac{\pi}{6} \cos \theta+\cos \frac{\pi}{6} \sin \theta\right)+\left(\sin \frac{\pi}{6} \cos \theta-\cos \frac{\pi}{6} \sin \theta\right)$
$=\sin \frac{\pi}{6} \cos \theta+\cos \frac{\pi}{6} \sin \theta+\sin \frac{\pi}{6} \cos \theta-\cos \frac{\pi}{6} \sin \theta$
$=2 \sin \frac{\pi}{6} \cos \theta$
$=2 \cdot \frac{1}{2} \cdot \cos \theta$
$=\cos \theta$
$=\mathrm{R} . \mathrm{S}$.
The left side is equal to the right side, so the identity is proved.
PTS: 1 DIF: Moderate REF: 7.5 Sum and Difference Identities
LOC: 12.T6 TOP: Trigonometry
KEY: Procedural Knowledge | Conceptual Understanding | Communication

